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J .  Phys. A: Math.  Gen .  20 (1987) L1193-Ll201. Printed in the UK 

LE’lTER TO T H E  EDITOR 

Accessible external perimeters of percolation clusters 

Tal Grossman and Amnon Aharony 
School of Physics and Astronomy, Raymond and  Beverly Sackler Faculty of Exact Sciences, 
Tel Aviv University, Tel Aviv 69978, Israel 

Received 17 August 1987 

Abstract. We introduce a new definition of a cluster’s accessible external perimeter, which 
is different from the usual definition of the ‘hull’. This external perimeter can be measured 
by probing (adsorbent) particles coming from the cluster’s exterior. The size of these 
particles determines which perimeter sites are  accessible from the outside and hence one 
can define different ‘external’ o r  ‘accessible’ perimeters according to this size. Using a 
Monte Carlo simulation we measured the fractal dimensions of these accessible perimeters, 
De,  for percolation clusters (at the threshold) on the square and  the triangular lattices. 
The fractal dimension of the accessible perimeter is found to depend on the size of the 
probing particles. For several sizes which are  larger than some (latt ice-dependent) threshold 
we find D e = ! .  which is significantly smaller than the ‘hull dimension’, D, =: ( found with 
smaller probing particles). 

The external perimeters of percolation clusters in two dimensions have recently received 
much attention. The ‘hull’, as defined and measured for percolation clusters (Reich 
and Leath 1978, Voss 1984), is usually considered as the external surface of the cluster. 
Like many other cluster properties at the percolation threshold, the hull has a fractal 
behaviour, i.e. its (average) mass, H, scales as a power of its linear size (or the cluster 
radius) L:  

H a  L D h  (1) 
where D, is its fractal dimension. Heuristic arguments (Sapoval er a1 1985, Bunde 
and Gouyet 1985), as well as Monte Carlo simulations (Voss 1984, Ziff 1986, Grossman 
and Aharony 1986, Grassberger 1986) and an exact calculation (Saleur and Duplantier 
1987) have established the value of the ‘hull dimension’ as Dh = f = 1.75. 

One can define the hull of a cluster in two natural ways (see figure 1). 
( i )  All perimeter sites that are connected via empty sites to the cluster’s exterior, 

i.e. the region around and away from the cluster, are external perimeter sites. This is 
the ‘vacant hull’. 

(i i)  One can also define the cluster surface as those occupied cluster sites that are 
nearest neighbours of the external perimeter sites as defined above. These sites are 
the cluster’s ‘occupied hull’. 

Ziff et a1 (1984) have shown that the vacant and occupied hulls are asymptotically 
proportional, and therefore they have the same fractal dimension Dh. 

The percolation hull is also related to other problems such as diffusion fronts 
(Sapoval et a1 1985), non-trapping self-avoiding walks (Ziff et a1 1984, Weinrib and 
Trugman 1985, Kremer and Lyklema 1985a, b, Gunn and Ortuno 1985) and interacting 
polymer chains at the 0 point (Coniglio et a1 1987). These relations have enabled 
several authors to obtain accurate values for the site percolation threshold on the 
square lattice (Rosso et a1 1985, Ziff 1986, Ziff and Sapoval 1986). 
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Figure 1. Different perimeters of a cluster on the square lattice. Occupied sites: H, hull 
sites; 0, internal sites. Perimeter (empty) sites: 0, internal perimeter; 0, accessible 
perimeter; x, external perimeter according to NNN exterior connectivity, but not to N N  

connectivity (therefore these sites are considered as vacant hull sites but not as accessible 
perimeter). 

In a previous letter (Grossman and Aharony 1986), we introduced a new definition 
for the external perimeter of the cluster on the square lattice. The difference is in the 
connectivity of the cluster’s exterior, being of next-nearest neighbours for the hull and 
of nearest neighbours for the new external perimeter (see figure 1). Using a Monte 
Carlo simulation, we found a significant change in the fractal dimension of the external 
perimeter (Grossman and Aharony 1986), which is about :, compared to for the hull. 

Similar results were obtained by Shaw (1986), who measured the fractal dimension 
of the external perimeter of a drying front and found 1.39*0.02, and also by Meakin 
and Family (1986) for invasion percolation in a strip geometry. They measured the 
external (according to the new definition) perimeter of their upper surface and found 
a fractal dimension of 1.343 * 0.002. 

Our new definition is based on the idea that the external perimeter can be measured 
by probing (adsorbent) particles coming from the cluster’s exterior. We asked ourselves 
the following question: suppose each occupied site is a solid square of unit size, and 
each perimeter site represents a potential reaction (or adsorption) site for one adsorbent 
particle. How many adsorbing sites are available to the particles coming from the 
outside? In that case, adsorbent particles cannot penetrate through the ‘narrow necks’ 
between two occupied next-nearest neighbours. Thus, adsorption can take place only 
on those external perimeter sites that are connected to the exterior via nearest-neighbour 
vacant sites. We define these sites as the external or the accessible perimeter of the 
cluster and their number will be denoted by E , .  On a triangular lattice, for example, 
there is no difference between this external perimeter and the (vacant) hull. However, 
on the square lattice there are many hull sites that are ‘screened’ or hidden out of 
reach from the adsorbent particles (see figure 1). Therefore, the accessible perimeter 
of clusters on the square lattice, at p c ,  scales with a different exponent than that of 
the hull: 

E ,  a L’c (2) 

where De =I: (Grossman and Aharony (1986) and this work) is the fractal dimension 
of the external perimeter. 
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In the present letter we generalise the definition of the accessible perimeter by 
considering adsorbent particles of various sizes. A particle of linear size slightly larger 
than unity cannot pass through an open space of width unity (see figure 2 ( 6 ) ) .  
Therefore, the external perimeter available to these particles, E 2 ,  is a smaller subset 
of the external perimeter defined previously. An even smaller number gf perimeter 
sites, E 3 ,  can be reached by particles of linear size slightly larger than 42 (see figure 
2 ( c ) ) ,  and so on. 

Figure 2. The accessible perimeters E , ,  E ,  and E ,  on the square lattice: ., occupied site; 
x, accessible perimeter site; 0, screened perimeter site. ( a )  The unpenetrable ’gate’ from 
the external perimeter E ,  ( x )  into a screened hull (0). ( b )  The arrows point at the 
unpenetrable entrances for particles larger than unity. The E? sites are denoted by x and 
0 denotes a sgreened E ,  site. ( c )  The arrow shows the unpenetrable entrance for particles 
larger than d’2. Of course, narrower entrances like the one on the right-hand side of the 
cluster also screen some perimeter sites. The accessible sites ( x )  for these particles are the 
E,  perimeter. 

To be more systematic, the accessible perimeter for probing particles of a given 
size r is defined as all the perimeter sites that are connected to infinity by a channel 
(of empty sites) which has a minimal width larger than r. Thus, the surface of the 
cluster decreases when probed by particles of increasing size (when these are coming 
from outside). This definition can be applied now to other lattices, for different 
dimensionalities, and for any kind of clusters or structures (e.g. invasion percolation, 
DLA, etc). Figure 3 shows the three accessible perimeters E , ,  E2 and E, on the triangular 
lattice. In this example, each _occupied site is a solid hexagon. Therefore, particles 
with radius larger than r = 1/43 cannot penetrate through gates like a in figure 3, and 
E2 is the accessible perimeter for all particles of radii less than that r. Similarly, E3 
is accessible for particles smaller than unity, etc. Of course, the exact size, r, that 
distinguishes between particles which probe different perimeters depends on the shape 
and size of the ‘occupied sites’ of the cluster. 

The concept of accessible perimeters is indeed relevant to the problem of adsorption 
on surfaces, chemical reactions on it, etc (Pfeifer et a1 1984, 1985, Pfeifer 1986). In  
these applications, the size of the absorbent particles is very important. In fact, particles 
of different sizes were used by Pfeifer et al to measure the fractal dimensionality of 
fractal surfaces. 
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/I 
Figure 3. The accessible perimeters on the triangular lattice. The occupied cluster sites 
are solid hexagons (in the given cluster they are also hull sites). Particles of radius larger 
than unity cannot go through gates like a or b and therefore the accessible perimeter for 
such particles, E,, only includes thqse perimeter sites denoted by 0.  Particles that are 
smaller than unity but larger than 1/43 can penetrate through b but not through a. Therefore 
the accessible perimeter E2 also includes the perimeter sites that are-denoted by x.  The 
E ,  perimeter is the accessible perimeter for particles smaller than l / ~ ' 3 .  It is identical with 
the vacant hull as defined on the triangular lattice. The site denoted by 0 belongs to this 
perimeter since it can be reached by these particles. 

Another interesting application of the external perimeter was suggested recently 
by de Arcangelis er a1 (1986). They study the voltage distribution in conductor- 
superconductor mixtures, and find that, in this problem, the relevant superconductor 
surface is the external perimeter rather than the hull, since this is the part of the 
perimeter on which the voltage drop is not identically zero. 

The question is: are we going to find a different dependence on the cluster size, 
i.e. a different fractal dimensionality, for each of the external perimeters E , ,  E l ,  E , ,  
etc? A hierarchy of exponents is possible, i.e. Dh 3 De,  3 DeZ a. . .z 1 (Grossman and 
Aharony 1986). However, a simple heuristic argument suggests that all the accessible 
perimeters of two-dimensional percolation clusters (at p , )  scale with the same exponent, 
D, = (Aharony 1986, Saleur and Duplantier 1987). This argument is based on the 
mapping between the two-dimensional percolation hull and a polymer chain at the 0 
point (Coniglio et al 1987). The difference between the hull and the accessible perimeter 
can be regarded as adding a repulsive interaction between some of the chain monomers. 
Such an interaction should drive the polymer from the 0 point to the excluded-volume 
phase, in which the polymer behaves like a self-avoiding random walk and therefore 
has a fractal dimension of 4 (Nienhuis 1984). Since different accessible perimeters 
differ only in the strength of this additional repulsion, one expects all of them to have 
the same behaviour, with De=:. Nevertheless, it must be emphasised that the above 
argument, although plausible, cannot be considered as an exact proof, for the following 
reasons. 

( i )  The difference between the ensemble of percolation hulls and the ensemble of 
accessible perimeters is not only in their statistical weight but also in the allowed 
configurations-any accessible perimeter can be a hull of a percolation cluster, but 
not vice versa. Therefore, the macroscopic restriction on the accessible perimeter 
cannot be simply interpreted as a finite-range interaction. 

( i i )  The mapping between the hull and a polymer chain relies on the equivalence 
between the percolation hull and the non-trapping self-avoiding walk (Ziff et a1 1984, 
Weinrib and  Trugman 1985). However, an  equivalent walk for the accessible perimeter 
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has not been suggested (so far), and a mapping between the accessible perimeter and 
some kind of an interacting polymer is not established yet. 

In this letter we investigate the behaviour of the hull and the accessible perimeters 
E , ,  E>,  E,  of percolation clusters, at p c ,  on the two-dimensional square and triangular 
lattices. We found that, on the square lattice, the three external perimeters have 
practically the same fractal dimension, D, = {, which differs significantly from the hull 
dimension, Dh = 1.75. Similar results were obtained for the triangular lattice, on which 
the E ,  accessible perimeter scales with the hull dimension (since it is the vacant hull 
of the cluster), but the E2 and E,  perimeters scale with the accessible perimeter 
dimension De. Our numerical results thus support the heuristic argument, yielding 
De =: for all accessible perimeters. 

A Monte Carlo simulation was used to study the fractal behaviour of the different 
perimeters. In this simulation, finite clusters were grown one at a time around a 'seed' 
(by a method that was used by Pike and Stanley (1981) and Grossman and Aharony 
(1986)). The clusters were grown on a two-dimensional array of M x M sites, with 
periodic boundary conditions. The linear size of the cluster is defined as L =  
max(L.,, L , ) ,  where L , ( L , )  is the x ( y )  component of the cluster's 'length'. By rejecting 
the clusters that grew to be larger than L 3> M - 3, we ensured that, up to this upper 
cutoff, the ensemble of clusters is unbiased by any boundary effect. More than 10 000 
clusters were created on the square lattice at p,=O.592 77 (Gebele 1984), with linear 
size 7 < L < 700, and about 4000 on the triangular lattice, at p c  = 0.5 (see, e.g., Stauffer 
1985). 

For each cluster, the perimeters were measured by 'walk' algorithms. Such 
algorithms were used by Ziff er al (1984) to create the percolation hulls, and by 
Grossman and Aharony (1986) to measure various cluster properties. In  our simulation, 
the program traces the external perimeter by 'walking' around the cluster on perimeter 
sites and checking the nearest and next-nearest neighbours to avoid getting into the 
'forbidden gates' (shown in figures 2 and 3).  A more detailed description of the 
algorithms and of the analysis procedure that follows is given in Grossman (1987). 

The clusters are grouped in bins according to their size. Each bin contains all the 
clusters with linear size in a certain interval [ L ,  L + A L ]  (with A L = O . 2 8 L ) ,  and their 
properties are averaged in each bin. When plotting the bin averages of H, E , ,  E? and 
E3 against L on a double logarithmic scale, we find a linear behaviour which is 
consistent with (1) and (2)  (figures 4 ( a )  and 5 ( a ) ) .  The slope of such a log-log plot 
should give the fractal dimension. However, because of corrections to scaling, this 
slope slowly changes, reaching its asymptotic value at the limit L+ m. Since we are 
interested in the large-L. limit (where (1) and ( 2 )  are valid), we calculate the local 
slopes D ( L )  (using groups of successive &bins) for each of the perimeters, and plot 
them against 1/L. By extrapolating D ( L )  to the limit l /L-+O,  we estimate the 
asymptotic exponents (see figures 4(b)  and 5 ( b ) ) .  Such a linear extrapolation with 
1 /L  assumes a leading correction-to-scaling term proportional to L"- ' .  Assuming a 
more general form of the first correction term, i.e. LD-"', one should extrapolate D( L )  
with L-". Trying several values of w we found that the variations in Dh and De are 
quite small. These variations give reasonable estimates for the errors in the exponents 
(see, e.g., Stauffer 1985, Grossman 1987). 

The results for the extrapolated exponents (fractal dimensionalities) are as follows. 
For clusters on the square lattice, we found that the change in the exterior connectivity 
from N N N  to N N  results in a very large change in the fractal dimensionality: from 1.75 
of the hull to 1.35*0.02 of the external perimeter E , .  A further increase of the 
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Figure 4. Square lattice. ( a )  The log-log plot of the hull (0) and of the accessible perimeters 
E ,  (U), E2 ( A )  and E ,  (V) against L. (The size of the symbols is about three times larger 
than the actual error bars.) ( b )  The local exponents D ( L )  of the hull and the accessible 
perimeters E , ,  E2 and E ,  extrapolated with l /L .  

adsorbent particle size does not cause a significant change in the fractal dimensionality: 
E ,  and E ,  both scale with the exponent 1.34i0.03, as seen in figure 4(b),  which shows 
the effective exponents D ( L )  of the hull and the three accessible perimeters E , ,  E* 
and E , ,  extrapolated with 1/L. 

The results for the triangular lattice are shown in figure 5. As expected, the occupied 
hull and the E ,  perimeter (the vacant hull) are asymptotically identical. At p c = 0 . 5 ,  
their ratio should indeed approach the limit (Ziff et a1 1984): 

vacant hull 1-p, +-- - 1. 
occupied hull p c  

However, the E? and E,  perimeters clearly exhibit the new accessible perimeter 
behaviour. The extrapolation results for the exponents are (see figure 5 ( b ) )  Dh= 
1.76k0.02 for the hull and  the E ,  perimeters, and De = 1.34k0.02 for E? and E , .  An 
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Figure 5. Triangular lattice. ((I) The log-log plot of the hull (0) and  of the accessible 
perimeters E ,  (U), Ez ( A )  and  E, (0) against L. (The size of the symbols i s  about  three 
times larger than the actual error bars.) ( b )  The lcoal exponents D ( L )  of the hull and the 
accessible perimeters E , ,  E z  and  E, extrapolated with 1/L. 

l l f  

impressive qualitative illustration of this ‘jump’ from the hull dimension to the acces- 
sible perimeter dimension is given by figure 6 ,  which shows the hull, the E ,  perimeter 
and also the E 2 ,  E3 perimeters of a large cluster on the triangular lattice. The occupied 
hull and the vacant hull (the E ,  perimeter) are certainly covering most of the cluster’s 
area, while the external perimeters E2 and E ,  really look like an external surface. 
Furthermore, one can hardly notice the small differences between the E ,  and E ,  
perimeters. 

Within the error bars, our results agree with the possibility that all the accessible 
perimeters do scale with the same exponent De = $. It would be preferable, then, to 
have a better analytic calculation of the accessible perimeters’ exponents. More 
implications of these results are as follows. 



L1200 Letter to the Editor 

I d )  

Figure 6. The hull and  the accessible perimeters of a large cluster on  the square lattice: 
( a )  the hull (10734  sites); ( h )  the E ,  perimeter ( the  vacant hull)  (10932 sites); ( c )  the E? 
perimeter (3560 sites); ( d )  the E,  perimeter (3284 sites).  

( i )  The fractal dimension of a surface, measured by adsorption of particles on its 
exterior, can be particle-size dependent. Similar results (for different problems) were 
found by Van Damme et a1 (1986) and Pfeifer (1986). 

( i i )  As a consequence, it is evident that the adsorption method is not equivalent 
to the caliper or ‘yardstick’ method (Mandelbrot 1982) of measuring the fractal 
dimensionality of a surface. In the caliper method, one traces the surface and puts 
on it ‘yardsticks’ of a given size b. Measuring a surface in three dimensions is done 
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in a similar way, by using two-dimensional plaquettes of a given size. The number N 
of these yardsticks (or plaquettes), which measures the length (or the area) of the 
surface, depends on their size b with the power law 

The experiments in which one measures the fractal dimension of a surface by adsorption 
(Pfeifer er al 1984, 1985) are based on this idea. In these experiments, a monolayer 
of adsorbent particles of a known size is created on the measured surface. The 
experiment is repeated with particles of different linear sizes b and the number of 
adsorbed particles N (  b )  is recorded. The fractal dimension of the surface can then 
be calculated from (3). However, unlike the idealised caliper method (in which one 
can trace the whole surface), the probing particles in the adsorption experiments come 
from the outside, and therefore parts of the surface can be screened, as explained 
above. What they measure is the accessible surface, which is the generalisation of the 
accessible perimeter presented in this work to three dimensions. It is not clear, though, 
whether such a change in the fractal dimensionality occurs in three dimensions or can 
be observed in real systems. 

N(b)cc  b-D  (3) 
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